Project Execution Best Practices

Tips & Tricks based on lessons learnt

Jonas Berge Emerson

Temporary vs. Permanent Communication

Ad-hoc Communication:

- Handheld field communicators used only a few minutes per year
- Just a few transactions
- If communication fails, we wiggle the wires and try again.

Permanent Comms:

- DCS and intelligent device management communication is "always on"
- Must work around the clock
- The expectation is that it shall not fail.
- Any protocol

Lessons Learnt from the Past

- Some first generation system, devices, and accessories were unreliable implementations of the technology
- Some systems lacked intelligent device management software
- Difficult user interface (hundreds of parameters)
- Discrete device not available (FF small portion)
- Limited Exi power
- Lack of training led to design and installation mistakes
- Lack of test tools
- Use of 4-20 mA practices
- Back then people were not familiar with software

Training

New Competencies

Training for Successful Outcome

- Training is a critical success factor for Foundation fieldbus projects
- PMC, consultant/EPC, and sub-contractors may have not undergone extensive Foundation fieldbus training
 - Needed for contractors do a good job with fieldbus
- Standard training must be customized to the unique design and requirements of each project
 - Such as the design and components used
- Complement to existing DCS and intelligent device management software courses
 - Task-oriented, project-specific

Fieldbus Training

- Fieldbus is different from 4-20 mA and on/off hardwiring
- New competencies required
- For all persons involved
- At every stage of the project
- Classroom and hands-on
 - Real test tools and equipment
- Customized to project hardware and procedures

Project-Specific, Task-Oriented, Role-Based Training

- Design engineers
 - –Wiring rules
 - -Function blocks
 - -Fieldbus validation software
- Installation technicians
 - -Lay, cut, strip, connect cable
 - -Check
- Device commissioning technicians
 - –Check bus
 - -Connect device
- Maintenance technicians
 - -Calibration trim, zeroing
 - -Add, remove, replace device
 - -Configuration, re-range
 - Device diagnostics

- Troubleshooting team
 - Device communication
 - –Loop blocks

Insist PMC, consultant, EPC, and subcontractor provide experienced personnel

KoM

Kick-off Meeting and Project Handover

Kick-off Meeting Reconfirm Project Assumptions

- Are multi-input transmitters fully utilized
 - Temperature profiling
- Have unnecessary discrete-I/O been eliminated
 - Positioner already includes feedback
 - Pressure, temperature, flow, and level switches replaced by transmitters
 - Electric actuators (MOV) can use Fieldbus
 - Variable speed drives and starters can use Profibus
- Is advanced diagnostics used
- Are remote indicators utilized

Project Team Organization Chart

 Insist on personnel experienced with fieldbus and intelligent device management software

Project MIV Instrument Lead - Manage Multiple Device Suppliers

- Only devices the DCS is approved for are used, or get DCS integration testing done
- Manage device revision so that the DD for all devices is loaded into intelligent device management software, DCS, and handheld field communicator
- Devices are purchased with tag pre-assigned
- Valve "fault-state" is defined for positioners
- Function block and diagnostics options
- Training on specifics for commissioning the device
- Training on how to use diagnostics in the device in troubleshooting
- Factory valve signatures are provided
- Compatible hazardous area approvals
- Samples are available for FAT interoperability test
- FAT interoperability testing is done

FDS

Fieldbus Functional Design Specification

Fieldbus Functional Design Specification (FDS)

- Generated by project team
- Content:
 - Hazardous area concept
 - Components
 - Wiring
 - Design considerations
 - Control strategy
 - Field Diagnostic Alerts
 - Etc.

FDS Fieldbus Appendix Content - Discuss and Agree

- Environmental specification
- Area classification
- Protection concept
- FF component selection
 - Field devices
 - Cables
 - Coupler
 - Power supply
- Wiring design
 - Topology
 - Grounding/shielding

Design

- Availability (redundancy)
- Device allocation (grouping)
- Response time
- Spare capacity
- Design rules
- Application configuration (control strategy)
 - Function block assignments (control allocation)
 - Bus macrocycle period
 - Spare capacity
 - Block tag convention
- Diagnostics
 - Field Diagnostics alerts

Physical Design

Bus hardware

Device Selection

- Interoperability Approved Devices

- FF registered
- DCS tested against third-party devices at DCS interoperability lab
 - Make sure all DD and device support files are available

Physical Design Highlight: Tagging

- Devices shall be ordered with tag pre-assigned in SOFTWARE not just the stainless steel tag
 - If not an MIV project, the consultant/EPC must order it

Pre-tagging is important for speedy device commissioning

Cable and Component Selection - Approved Components

- FF registered
 - Fieldbus Cable
 - Fieldbus Power Supplies
 - Fieldbus Couplers (wiring blocks), Barriers, & Miscellaneous
 - Fieldbus Terminators

Physical Design Highlight: Segment Design Validation

- Review of consultant/EPC segment design 'typicals'
 - Or segment specific; as the case may be
- Tips & Tricks
 - Device power consumption
 - Normal and firmware download
 - Spur short protection current
 - Not zero
 - Power to field communicator
 - Bus powered
 - Power to testers
 - Bus powered

Control Design

Bus and Function Blocks

Control Design Highlight: Control Allocation - Loading

- Maximize Control-In-the-Field (CIF)
- Same loop devices ideally on the same bus (but is not a must)
- Tips & Tricks
 - Opt for devices with broad block availability
 - Opt for devices with fast block execution time

Control Design Highlight: Non-Safety-Related Interlocks: Fault-State

- Consultant/EPC to define valve action on loss of communication and sensor failure
 - CHAZOP
- Entered into function blocks at time of configuration:
 - Status options, IO-options (including fault-state), control options, etc.
 - In AI, PID, and AO etc.

Still need mechanical fail-safe and SIS as well!

Control Valves Fail-Safe vs. Fault-State

Fail-Safe

- In valve actuator
- Mechanical (spring-return)
- Control valve goes to failsafe on loss of air or bus power

Fault-State

- Output function block
- Configured (from DCS)
- Control valve sent to faultstate on loss of communication or sensor failure etc.

Consultant/EPC to specify both in instrument specification sheet

Control Design Highlight: Planning Field Diagnostic Alerts

- Field Diagnostics alerts is a new capability
- This new capability has a new engineering task
- Consultant/EPC defines priorities and classification for devices
 - Enable or suppress
 - What affects operations and must be filtered through to operators

FAT

Interoperability testing and FAT

Agree on System FAT Test Plan

- Hardware inspection
 - Approved components
- H1 card port check
 - One device
- Fieldbus power redundancy check
- H1 card redundancy check
- Control strategy/logic check
- Graphics check
- Field Diagnostics alerts check
- Interoperability check
 - One device of each type
- Worst case fully loaded check

Device Revision Management - Check DD Files at FAT

Protocol	Manufacturer	Model	Description	Device Revision	Remarks
HART	Brand-A	1234	Temperature Transmitter	3	SIS
HART	Brand-B	ABC	Valve Monitor	6	SIS
FF	Brand-C	5678	Gas Chromatograph	3	
FF	Brand-D	DEF	Electric Actuator (MOV)	2	
PROFIBUS-DP	Brand-E	9012	Variable Speed Drive (VSD)	2	MCC
FF	Brand-F	GHI	On/Off valve	1	
FF	Brand-G	3456	Multi-Input Temperature	7	
			Transmitter		
FF	Brand-H	JKL	Radar Level Transmitter	1	Tank
					gauging
					system
FF	Brand-J	7890	Multi-Spot Temperature	1	Tank
			Transmitter		gauging
					system
FF	Brand-K	MNO	Display	1	Tank
					gauging
					system

Verify DD presence by connecting device

FAT Highlight: Fieldbus "Test Panel" for Full FAT

- Simulate fieldbus devices to test control loops and graphics
 - Faceplates
- Configuration checks
 - Scale/range, units, transfer function, channel
 - Fault-state
 - Alarming

FAT Highlight: Interoperability Testing

- Test one of each device type
- Ensures communication and DD file are OK
- Test configuration download

Installation / Construction

Laying the fieldbus cable and field junction boxes

Installation Highlight: Test Equipment

- Establish procedure and checklist
- Hands-on training for contractor
- Required test tools are made available in required quantity so as to not delay project
 - Fieldbus power and signal simulator
 - Fieldbus tester
 - Oscilloscope or ADM

- R and C meter

Device Commissioning

Connecting the Fieldbus Devices

Device Commissioning Highlight: Digital Way – Not Analog Way

- Transmitters are <u>not</u> calibrated (trim) at site
 - Transmitters are calibrated (trim) in the factory
 - Zeroing for mounting position done as usual
 - Level transmitters scaled to percentage as usual
- There is no five point 0-25-50-75-100 % test
 - (i.e. no 4-8-12-16-20 mA signal)
- If range has to be changed, it is only done from DCS, in a single place
 - From DCS it is downloaded to the transmitter

Device Commissioning Highlight: Test Equipment

- Establish procedure and checklist
- Hands-on training for contractor
- Required test tools are made available in required quantity so as to not delay project
 - Fieldbus tester
 - Oscilloscope or ADM
 - Handheld field communicator

Use Auto-Commissioning

- Purchase devices pretagged
- Just connect the device to the bus
- Fully automatic commissioning without touching the DCS software
 - Automatic address assignment
 - Automatic configuration download

Use of Express and Batch Download

If loops are not running, use express download

Utilizes full bandwidth

Use batch download

Multiple ports downloaded unattended

Operational: Test Equipment

 What test tools will be available on site for daily troubleshooting after project team is disbanded?

Fieldbus tester

Oscilloscope or ADM

Handheld field communicator

Summary

- Evaluate system and device ease of use
- Task-oriented training
- Specialized tools
- Digital procedures, not analog
- Maximize FF use
- Fieldbus experience
- MIV lead
- FDS
- Pre-tag devices
- Device interoperability certification
- Maximize CIF

- Fast devices with broad block library
- Engineer Field Diagnostics
- FAT test plan
- Manage DD files
- Full FAT with interoperability test
- Installation & commissioning procedures and check lists
- Auto-commissioning
- Express and batch download