Industrial Internet of Things (IIoT)

For expert support
Not enough time...

- Data from equipment in plants collected automatically
- Central pool of experts: vibration, valves, corrosion, steam traps...

Fleet Management Center
- Your own corporate
- Third-party connected service
Topics Covered

- Not enough experts in the plant
- Connecting the plant to experts
- Industrial Internet of Things
Not Enough Experts in Plant

The case for change
Equipment Fail and Underperform

- Not enough experts to analyze the data
 - Rotating machinery (vibration)
 - Steam traps
 - Control valves
 - Heat exchangers
 - Relief valves
 - Analyzers
- Especially remote sites and offshore
- Equipment fail and shutdowns occur
Connecting the Plant to Experts

Connected Equipment
Industrial IoT (IIoT)

Industrial Internet of Things

- Monitor industrial equipment
 - Not home or office

- Remotely across the Internet
 - Not from within the plant itself

- Monitoring of the things themselves: equipment
 - Not the process, which is already automated
The Internet

Internet of People

Human interfaces
- Computers
- Tablets
- Smart phones

Internet of Things

Networked autonomous devices
- Refrigerator
- Car
- Aircon
Industrial Internet of Things (IIoT)

- Industrial things
 - Industrial equipment
 - Smart pump
 - Robot
 - Smart valve
 - Can also be instrument itself

- Using industrial protocols
 - WirelessHART
 - Fieldbus
 - PROFIBUS

- Unique identifier
 - IPv6 address
 - MAC address
 - Any other kind of unique ID
Internet Enables Centralized Monitoring of Equipment

- Enterprise level
 - Corporate technology center of operations
- By equipment manufacturer
 - Pump, valve, ACHX, CT, etc.
- By third-party plant services provider
IIoT is Different from SCADA
- Both Are Centralized But There Are Differences, Can Share Infrastructure

- SCADA is about **process** monitoring and operation
- SCADA typically use private networks (not across the Internet)

- IIoT provides the ability to drill down into the ‘Things’
 - Into equipment and devices
 - Monitor diagnostics
 - Configure
 - Update device firmware
 - etc.

![Smart Connected Pump](image1)

![Intelligent on-off valve](image2)
Digital transformation is mostly done on-premises
No internet connection or cloud required
IIoT can follow
Industrial “Things”

- Pumps
- Cooling towers
- Air cooled heat exchangers
- Blowers/fans
- Compressors
- Heat exchangers
- Valves
- Analyzers
Centralized Monitoring Across the Internet

- Centralized pool of experts to support plants around the world
 - Rotating machinery (vibration)
 - Steam traps
 - Control valve experts
 - Heat exchangers
 - Relief valves
 - Analyzers

- Experts provide reports:
 - Which equipment need overhaul
 - Which equipment need cleaning
 - Which equipment need replacement

- Corporate fleet monitoring center
- Connected services; by external third-party
IIoT Architecture
Architecture

Integrated
- Integrated through DCS or historian
- Special care with cyber security
- Applications
 - Control valves, analyzers, flow meters, DCS itself, equipment with process data

Separate
- No connection to the DCS or historian
- Dedicated Internet connection
- Applications
 - Steam traps, vibration (rotating machinery), corrosion, heat exchangers, relief valves, entire process equipment (pumps, compressors, fans/blowers, cooling towers, and air cooled heat exchangers)
Use Open Standards

- Owned and managed by multi-vendor organizations
- WirelessHART (IEC 62591)
 - Wireless sensor network
- FOUNDATION fieldbus (IEC 61158)
 - Instrument network
- OPC-UA (IEC 62541)
 - Software API

Caveat Emptor
If the technology is owned by a single company it is not ‘open’ even if other vendors can license it
Typical IIoT Architecture

- Ubiquitous sensors and pervasive networking is the foundation of IIoT
- The backbone and backhaul networks use the IP-version of the instrument protocols:
 - HART-IP
 - FF-HSE
Conclusion

Summary
Summary

- Not enough experts in the plant
- Connecting the plant to experts
- Industrial Internet of Things
I’m Listening...

- Jonas Berge

jonas.berge@emerson.com

https://www.linkedin.com/in/smartdigital

https://www.emersonexchange365.com/members/jonas.berge
Copyright © 2017 FieldComm Group™
This document contains copyrighted material and may not be reproduced in any fashion without the written permission of the FieldComm Group™.

Trademark Information
FieldComm Group™, FOUNDATION™ Fieldbus, HART-IP™ and FDI™ are trademarks, and HART®, WirelessHART®, ROM® and SIF® are registered trademarks of FieldComm Group, Austin, Texas, USA.

Any use of these terms hereafter in this document, or in any document referenced by this document, implies the trademark/registered trademark. All other trademarks used in this or referenced documents are trademarks of their respective companies. For more information, contact FieldComm Group at the address below.

Attention: FieldComm Group President
FieldComm Group
9430 Research Blvd., Ste. 1-120
Austin, TX 78759, USA
Voice: (512) 792-2300
Fax: (512) 792-2310
http://www.fieldcommgroup.org

Intellectual Property Rights
The FieldComm Group (the Group) does not knowingly use or incorporate any information or data into the HART, FOUNDATION Fieldbus and FDI protocol standards, which the Group does not own or have lawful rights to use. Should the Group receive any notification regarding the existence of any conflicting private IPR, the Group will review the disclosure and either (A) determine there is no conflict; (B) resolve the conflict with the IPR owner; or (C) modify the standard to remove the conflicting requirement. In no case does the Group encourage implementers to infringe on any individual's or organization's IPR.