Fieldbus is Easy!

Hugh Wingrove
Applications Manager, ME
MTL Instruments

Fieldbus is Easy!

- Technology
- Foundation guidelines
- Component choice
- Segment design
- Verification
How is fieldbus different from 4-20mA?

4-20mA

- In 4-20mA circuits, the power supply, field device and input card are connected in series.

Fieldbus

- In a Fieldbus system, the power supply, field devices and input card are connected in parallel.

Expanded System View

DCS: Limited system view. Does not include diagnostics and other information from field devices.

FCS: Expanded view. Field devices are part of the system.
Diagnostics

- Diagnostic information available in device
- Allows faster commissioning and troubleshooting

<table>
<thead>
<tr>
<th>Technology</th>
<th>4-20mA</th>
<th>Fieldbus w/o diagnosis</th>
<th>Fieldbus with diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructional checks</td>
<td>12.5 days</td>
<td>2 days</td>
<td>Not required</td>
</tr>
<tr>
<td>(connections, polarity,...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to repair</td>
<td>6 days</td>
<td>6.5 days</td>
<td>Not required</td>
</tr>
<tr>
<td>Pre/commissioning</td>
<td>25 days</td>
<td>12.5 days</td>
<td>1.6 days</td>
</tr>
<tr>
<td>instrument checks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to repair</td>
<td>3 days</td>
<td>0.5 days</td>
<td>1 days</td>
</tr>
<tr>
<td>Sum</td>
<td>46.5 days</td>
<td>21.5 days</td>
<td>2.6 days</td>
</tr>
</tbody>
</table>

Deterministic

- Execution of function blocks and communication is scheduled, ie. deterministic
- Control is really distributed “on the wire”
- KEY feature of FOUNDATION fieldbus - it is a system, not just a bus
- FF also includes provisions for a back-up schedule
LAS

Link Active Scheduler

- Controls communications on segment
 - Who publishes data when via
 - Compel Data (CD) for cyclic/scheduled data transmission
 - Pass Token (PT) for acyclic/unscheduled data transmission
 - Maintains Live List
 - Listing of all devices on segment

Macrocycle

Cyclic Time

- Publish/Subscribe
- Deterministic
- Communicates control data
 - PV
 - Status
 - Time Stamp

Acyclic Time

- Communicates NON-control data:
 - Alerts
 - Trends
 - Queries
 - Upload
 - Download
- Uses Token Passing
Compel Data (Publish)

Real Time component of Fieldbus

- Controlled by LAS (and Back-up LAS)
- Controls when each device/function block on the network is to publish its information for all the other devices/function blocks to subscribe to or read.

Pass Token

Real Time component of Fieldbus

- Controlled by LAS (and Back-up LAS)
- Controls when each device on the network pushes its alarm and engineering data to the other devices to read.
- Time-limited function
Foundation Design Guidelines

- FF-569, Host Interoperability Support Test
- FF-831, Fieldbus Specification for Power Supplies and Conditioners
- FF-844, Fieldbus Specification for Cable
- FF-846-1.1, Fieldbus Device Couplers
- AG-181, System Engineering Guidelines (Rev 3.1)
- Foundation Website lists all approved products

Physical Layer - specifications

- Power and Data on same cable
- Uses:
 - IEC 61158-2 Physical Layer standard
 - IEC 60079 Hazardous Area standard

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. number of devices (Link Master and Basic Devices)</td>
<td>32</td>
</tr>
<tr>
<td>Transmission Rate</td>
<td>31.25 kBit/s</td>
</tr>
<tr>
<td>Min. current consumption per node</td>
<td>10 mA</td>
</tr>
<tr>
<td>Data transmission via current change</td>
<td>+/- 9 mA</td>
</tr>
<tr>
<td>Min. supply voltage</td>
<td>9 V</td>
</tr>
<tr>
<td>Trunk cable length max</td>
<td>1900 m</td>
</tr>
<tr>
<td>Spur cable length max</td>
<td>120 m</td>
</tr>
<tr>
<td>Communication</td>
<td>Publisher/Subscriber</td>
</tr>
</tbody>
</table>
Definitions

- Host H1 card
- Segment
- Field
- Control room
- Trunk ("home run")
- Spur
- Fieldbus devices
- Power supply/conditioner
- Wiring hub

Wiring Topologies

- Point-to-Point
- Bus with Spurs
- Daisy-Chain
- "Chicken Foot" or Tree
- Preferred
Permitted Fieldbus Cable Types

<table>
<thead>
<tr>
<th>Fieldbus Foundation Cable Type and Description</th>
<th>Max Segment Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A: Multi or single-twisted-pair, individually shielded</td>
<td>1,900 m (6,232 ft)</td>
</tr>
<tr>
<td>Type B: Multi-twisted-pair, with an overall shield</td>
<td>1,200 m (3,936 ft)</td>
</tr>
<tr>
<td>Type C: Multi-twisted-pair, without a shield</td>
<td>400 m (1,312 ft)</td>
</tr>
<tr>
<td>Type D: Multi-core, without twisted pairs with an overall shield</td>
<td>200 m (656 ft)</td>
</tr>
</tbody>
</table>

Segment Design

Macro cycle time
- Bus bandwidth - approx. 50 messages/sec
- Typical cycle time of 500ms from input to output

Physical layer may limit number of devices per segment and/or cable length in some applications:
- Field devices require 9V minimum
- Ohm’s Law - Voltage drop along cable may limit the maximum cable length
- Output current of power supply determines number of devices supported

Consequence of failure
- May need to limit the number of Fieldbus devices (control loops) in critical applications
Fieldbus Power Supply

For 10 fieldbus devices @ 20mA/device*

\[\sum = (10 \times 20) = 200\text{mA} \]

Field devices require 9.0V min.
- Defined by Fieldbus Foundation

Voltage @ end of trunk cable = 11V
- 9.0V + 2.0V margin

Max. voltage drop in cable
= 21 – 11 = 10V

\(R_{\text{cable max}} = \frac{10}{0.2} = 50\text{ohms} \)

Assume 0.8mm\(^2\) cable
- 44ohms/km loop

Max cable length
= \(\frac{50 \times 1000}{44} = 1136\text{m} \)

* "NOTE: Bus-powered FOUNDATION™ Fieldbus devices require 10 to 30 mA at between 9 and 32 volts. Most devices have a current consumption at 15 to 17 mA."

Taken from Page 21, Shell DEP 32.30.20.13-Gen., August 2008

Voltage drop example (simplified)

Cable lengths with typical power supply

*19V, 350mA output
Maximum spur length

<table>
<thead>
<tr>
<th>No. of communication elements</th>
<th>Max. spur output cable length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 12</td>
<td>120m</td>
</tr>
<tr>
<td>13 – 14</td>
<td>90m</td>
</tr>
<tr>
<td>15 – 18</td>
<td>60m</td>
</tr>
<tr>
<td>19 – 24</td>
<td>30m</td>
</tr>
<tr>
<td>25 – 32</td>
<td>1m</td>
</tr>
</tbody>
</table>

Risk management

Level 1
- Failure of segment or valve results in an immediate plant shutdown
 - Limit to one Level 1 valve and associated transmitter

Level 2
- Failure of the segment or valve will not result in a short term risk of a plant shutdown
 - Two Level 2 valves can reside on the same segment along with Level 3 devices

Level 3
- Monitoring only devices
 - Up to 12 on one segment
Verification

Segment Verification consists of:

- Electrical Limits for Bus Powered Devices
- Device Voltage
- Device Current
- Signal Attenuation
- Function Block execution times
- Macrocycle “Free Time”
- VCRs (in older Host systems)
- Risk management guidelines

Thank you